Dresden 2020 – scientific programme
The DPG Spring Meeting in Dresden had to be cancelled! Read more ...
Parts | Days | Selection | Search | Updates | Downloads | Help
KFM: Fachverband Kristalline Festkörper und deren Mikrostruktur
KFM 11: Ferroics - Domains and Domain Walls (joint session KFM/MA)
KFM 11.5: Talk
Wednesday, March 18, 2020, 16:20–16:40, TOE 317
Robust In-Plane Ferroelectricity in Ultrathin Epitaxial Aurivillius Films — •Elzbieta Gradauskaite1, Marco Campanini2, Banani Biswas3, Christof W. Schneider3, Manfred Fiebig1, Marta D. Rossell2, and Morgan Trassin1 — 1Department of Materials, ETH Zurich, Switzerland — 2Electron Microscopy Center, Empa, Switzerland — 3LMX, Paul Scherrer Institut, Switzerland
Layered ferroelectrics exhibit functionalities beyond those of the classical ferroelectric perovskite compounds due to their highly anisotropic structure. Unfortunately, the layered architecture has been impeding their growth as single crystalline thin films, and thus their integration into oxide-electronic devices. We show that deposition of layered ferroelectric Bi5FeTi3O15 (BFTO) thin films on a lattice-matching NdGaO3 (001)-oriented orthorhombic substrate supports the epitaxial single-crystal form of this Aurivillius compound. Layer-by-layer growth is demonstrated, permitting in-situ control of thickness with sub-unit-cell accuracy and resulting in atomically flat surfaces. The achievement of twin-free films significantly enhances their uniaxial ferroelectric properties. In the ultrathin regime, such films exhibit in-plane polarization with a periodic arrangement of ferroelectric domains, which, in conjunction with uniaxial ferroelectric anisotropy, results in nominally charged domain walls. Hysteresis measurements reveal a remnant polarization of 16.5 µC cm-2 with a remarkable endurance after 1010 switching cycles. The uniaxial in-plane ferroelectricity of Aurivillius thin films breaks new ground for alternative device paradigms less susceptible to the depolarizing-field effects.