DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

KFM: Fachverband Kristalline Festkörper und deren Mikrostruktur

KFM 12: Materials for Energy Storage (joint session KFM/CPP)

KFM 12.6: Talk

Thursday, March 19, 2020, 11:30–11:50, HSZ 301

Actuation and electrostriction of composite films with heteregenous filler clustering — •Elshad Allahyarov — Duisburg-Essen University, Theoretical Chemistry

Controlled actuation of electroactive polymers with embedded high dielectric nanoparticles is theoretically analyzed. If the inclusions are placed randomly in the elastomer body, the composite always contracts along the direction of the applied field. For a simple cubic distribution of inclusions, contraction occurs if the applied field is directed along the [001] direction of the lattice. For inclusions occupying the sites of other lattice structures such as body-centered or face-centered cubic crystals, the composite elongates along the field direction if it is applied along the [001] direction. The stability of the elongation against the imperfectness of the lattice site positions and the distortion ratio of the initial structures are examined. Finite elongation windows show up for the initially distorted body-centered cubic and face-centered cubic crystals as a function of the distortion ratio of the initial structure. The existence of these elongation windows are also predicted from the analysis of the electrostatic energy of the distorted body-centered cubic and face-centered cubic lattice structures. Our results indicate that the electrostriction effect, which is the main contribution to the actuation of low aspect-ratio composites, strongly depends on the geometry of the spatial distribution of nanoparticles, and can thereby largely be tuned.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden