DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

MA: Fachverband Magnetismus

MA 1: Computational Magnetism I

MA 1.11: Talk

Monday, March 16, 2020, 12:15–12:30, HSZ 04

Quantum effects in thermally activated domain wall switching in ferromagnets. — •Grzegorz Kwiatkowski1 and Pavel F. Bessarab1,21University of Iceland, Reykjavík, Iceland — 2Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany

Most widely used data storage technologies are based on nanoscale magnetic structures [1]. In order to improve both memory retention and energy efficient writability one needs to increase stability of magnetic samples without changing the energy barrier. Therefore, it is vital to optimise the preexponential factor in the Arrhenius law, which requires one to properly study the effect of internal degrees of freedom on thermal switching pocesses [2,3]. We present analytic estimation of rate of escape for domain wall switching in 3D samples with focus on how results scale with internal parameters and sample size. Since minimum excitation energy for high frequency magnon modes is larger than average energy of thermal fluctuations, we employ Bose-Einstein statistics, which leads to nontrivial temperature dependencies of the preexponential factor. Our results open up new possibilities for enhancing stability of magnetic structures by entropic effects.

This work was funded by the Icelandic Reseach Fund (Grant No. 184949-052) and Alexander von Humboldt Foundation.

[1] W. A. Challener et al. Nat. Photon. volume 3 (2009)

[2] P. F. Bessarab et al. Phys. Rev. Lett. 110.2 (2013)

[3] G. Fiedler et al. J. Appl. Phys. 111 (2012)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden