DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MA: Fachverband Magnetismus

MA 27: Complex Oxides: Surfaces and Interfaces (jointly with DS, HL, KFM, MA, O) (joint session TT/HL/MA)

MA 27.7: Vortrag

Dienstag, 17. März 2020, 15:30–15:45, HSZ 02

Study of 2D superconductivity at oxide interfaces by microwave resonators — •Edouard Lesne1, Yildiz Saglam1, Daniel Bothner1, Felix Schmidt1, Marc Gabay2, Gary Steele1, and Andrea Caviglia11Delft University of Technology — 2Université Paris-Saclay

The emergent two-dimensional electron system (2DES) formed at the interface between LaAlO3 (LAO) and SrTiO3 (STO) insulating oxides has been a subject of great interest in condensed matter physics during the last decade. Recently, (111)-oriented LAO/STO interfaces have been shown to exhibit an electronic correlation driven reconstruction of its band structure and a two-dimensional superconducting (SC) ground state, both tunable by electrostatic field-effect.

Superconducting coplanar waveguide (SCPW) resonators are tools of exquisite sensitivity for probing low energy excitations in quantum materials, due to their intrinsic low ohmic losses and high quality factors, highly relevant to quantum technology platforms. Here, in order to study the superconducting state at the LAO/STO(111) interface, we designed embedded SCPW resonators whose microwave resonance frequency can be tuned by electrostatic gating, manifesting a change of the 2DES superfluid density through a large change of its kinetic inductance. This allows us to map the SC phase diagram in a detection scheme that goes beyond traditional resistive measurements. Our work highlights the potential of such an approach to the fundamental study of superconductivity in complex materials.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden