Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
MM: Fachverband Metall- und Materialphysik
MM 29: Materials for Energy Storage and Conversion - Battery and Fuel Cell Materials (joint session MM/CPP)
MM 29.1: Vortrag
Dienstag, 17. März 2020, 14:15–14:30, IFW D
Atomistic simulation of working interfaces: Towards understanding the role of complex multiphase grain boundaries in all-solid-state Li-ion batteries — •Sina Stegmaier1, Roland Schierholz2, Christoph Scheurer1, and Karsten Reuter1 — 1Theoretische Chemie, TU München — 2IEK-9, Forschungszentrum Jülich
All-solid-state batteries (ASSBs) present a next-generation technology, promising increased operation safety and lifetime as compared to state-of-the-art Li-ion cells. The performance of solid-state electrolytes (SSEs) in ASSBs, though, is severely limited by poorly understood interfacial processes. Atomistic insight into the structure and transport processes at working SSE grain boundaries (GBs) [1] is required to enable rational progress.
To this end, we employ molecular dynamics (MD) simulations with a first-principles parametrized force field and study complex multiphase GBs in the SSE material LATP. An experimentally guided sinter protocol is established to model the formation of semi-amorphous domains at the interface of crystalline LATP grains. The resulting structural atomistic models enable the investigation of anisotropic lateral and transverse ion transport and the comparison to macroscopically accessible observables such as ion conductivity. Following this approach, we leverage experimental input for computational modeling and studying of more realistic solid-solid working interfaces.
[1] A. Mertens et al., Solid State Ionics 309, 180 (2017).