DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 30: Poster Session II

MM 30.34: Poster

Dienstag, 17. März 2020, 18:15–20:00, P4

Neural network for learning and predicting tight-binding parameters — •Till Hanke, Jürgen Henk, and Ingrid Mertig — Martin-Luther-Universität Halle-Wittenberg

Tight-binding approaches have two major advantages: they allow for an intuitive interpretation of electronic structures and to perform large-scale electronic-structure calculations. However, parameter sets, either DFT-based or empirical, are often available only for simple bulk systems.

We report on artificial neural networks which can predict Slater-Koster tight-binding parameters for heterogeneous systems. The networks are trained using parameter sets for elemental materials. These sets will be used for electronic-structure and transport calculations (on the femtosecond timescale) for which accurate descriptions of complex interfaces are essential.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden