DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 30: Poster Session II

MM 30.37: Poster

Dienstag, 17. März 2020, 18:15–20:00, P4

a Neural Network Potential with electrostatic interaction — •Tsz Wai Ko and Jörg Behler — Universität Göttingen, Institut für Physikalische Chemie, Theoretische Chemie, Tammannstraße 6, 37077 Göttingen, German

High-dimensional neural network potentials (HDNNPs), which represent one of the most frequently used types of ML potentials, construct the short-range energy as a sum of environment-dependent atomic energy contributions. In addition, long-range electrostatic interactions can be included employing environment-dependent atomic charges. Both contributions are determined using atom-centered radial and angular symmetry functions as local structural descriptors.

Here we present benchmark calculations for several model systems such as water molecules and Zinc oxide clusters using Density Functional Theory reference calculation

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden