|
18:15 |
MM 30.1 |
The interplay of geometry and chemistry at Al grain boundaries: insight from atomistics — Liam Huber, •Poulami Chakraborty, Huan Zhao, Baptiste Gault, Dierk Raabe, and Joerg Neugebauer
|
|
|
|
18:15 |
MM 30.2 |
Resolving the grain boundary structure in nanocrystalline titanium thin films — •Vivek Devulapalli, Christian H. Liebscher, and Gerhard Dehm
|
|
|
|
18:15 |
MM 30.3 |
Observing the atomic structure of [111] tilt grain boundaries in Al — •Saba Ahmad, Christian Liebscher, and Gerhard Dehm
|
|
|
|
18:15 |
MM 30.4 |
Fractal abnormal grain growth in nanocrystalline Pd(Au): correlation between Au concentration, hardness and microstructure — •Markus Fischer, Raphael Zeller, Christian Braun, Jonas Endres, Rainer Birringer, and Carl E. Krill III
|
|
|
|
18:15 |
MM 30.5 |
Fractal abnormal grain growth in nanocrystalline Pd(Au): a result of abnormal growth triggered by pinning centers? — •Raphael Zeller, Tobias Okker, Karina De La Torre, Christian Braun, Mingyan Wang, Rainer Birringer, and Carl E. Krill III
|
|
|
|
18:15 |
MM 30.6 |
Structural relaxation in nanocrystalline Pd90Au10 — •Christian Braun, Michael J. Deckarm, Nils Boussard, and Rainer Birringer
|
|
|
|
18:15 |
MM 30.7 |
Correlative study of grain boundary segregation in nanocrystalline copper–nickel alloys — •Felix Fischer, Rüya Duran, Guido Schmitz, and Sebastian Eich
|
|
|
|
18:15 |
MM 30.8 |
Abnormal grain growth in Al(Cu) assisted by Zener pinning — •Maria Hohm, Raphael Zeller, Mingyan Wang, and Carl E. Krill III
|
|
|
|
18:15 |
MM 30.9 |
About the atomic structure of copper grain boundaries — •Lena Frommeyer, Christian H. Liebscher, and Gerhard Dehm
|
|
|
|
18:15 |
MM 30.10 |
Effect of residual stresses on dislocation nucleation and motion in lamellar TiAl alloys — •Ashish Chauniyal and Rebecca Janisch
|
|
|
|
18:15 |
MM 30.11 |
Mechanical testing of SAC soldered micro- and nanowire joints — •Samuel Griffiths and Guido Schmitz
|
|
|
|
18:15 |
MM 30.12 |
Microstructural and mechanical investigation of magnetic impulse welds of Aluminium and Copper — •David Stein, Maximilian Gnedel, Sven Winter, and Ferdinand Haider
|
|
|
|
18:15 |
MM 30.13 |
Fracture Matching of Metals in Forensic Science — •Jens Balzer, Bert Weimar, Horst Katterwe, and Werner Deinet
|
|
|
|
18:15 |
MM 30.14 |
Plane wave scattering on Janus spheres — •Jochen Wauer and Tom Rother
|
|
|
|
18:15 |
MM 30.15 |
A school badge based on scalable structural color — •Shiyao Jia, Yudie Huang, Yi Wang, Wenxin Wang, Zhihang Wang, Jiaxu Chen, and Fanzhou Lv
|
|
|
|
18:15 |
MM 30.16 |
Oriented and isotropic electrospun magnetic nanofibers - experiment and simulation — •Timo Grothe, Jan Lukas Storck, Al Mamun, Marah Trabelsi, Michaela Klöcker, Christoph Döpke, Lilia Sabantina, Tomasz Blachowicz, and Andrea Ehrmann
|
|
|
|
18:15 |
MM 30.17 |
Comparison and analysis of ultra-narrow gaps fabricated by electron and helium ion beam lithography — Hao HU, Monika Fleischer, and •Pierre-Michel Adam
|
|
|
|
18:15 |
MM 30.18 |
Magnetoresistance of ruthenium nanogranular wires — •Nikolai Mai, Thomas Heinzel, Mihai Cerchez, Shibesh Dutta, Anshul Gupta, Shreya Kundu, Giacomo Talmelli, Florin Ciubotaru, Zsolt Tokei, and Christoph Adelmann
|
|
|
|
18:15 |
MM 30.19 |
Effect of Interfaces in the Oxide Transport Process in Platinum Coated Porous Frameworks of Yttria-Stabilized Zirconia (YSZ) — •Michele Bastianello, Jan-Ove Söngen, and Matthias T. Elm
|
|
|
|
18:15 |
MM 30.20 |
Optimization of structural and electrochemical properties of LiNiO2 thin film cathodes — •Juri J.E. Becker, Fabian Michel, Hendrik Hemmelmann, Angelika Polity, and Matthias T. Elm
|
|
|
|
18:15 |
MM 30.21 |
Ti3C2/MoS2 composite as anode material for lithium-ion batteries — •Peng Guo, Yuquan Wu, Lennart Singer, Peter Comba, and Rüdiger Klingeler
|
|
|
|
18:15 |
MM 30.22 |
Polypyrene tetraone (PPTO) as cathode material for lithium-ion batteries — •Jonas Spychala, Yuquan Wu, Lucas Ueberricke, Michael Mastalerz, and Rüdiger Klingeler
|
|
|
|
18:15 |
MM 30.23 |
Phase transformation in Li4+xTi5O12 probed optically — •Yug Joshi, Robert Lawitzki, and Guido Schmitz
|
|
|
|
18:15 |
MM 30.24 |
The contribution has been withdrawn.
|
|
|
|
18:15 |
MM 30.25 |
Non-adiabatic time-optimal edge mode transfer on mechanical topological chain — •Ioannis Brouzos, Georgios Theocharis, Ioannis Kiorpelidis, and Fotios Diakonos
|
|
|
|
18:15 |
MM 30.26 |
Atomistic investigation of the LLZO / Li metal interface for all-solid state batteries — •Lisette Haarmann and Karsten Albe
|
|
|
|
18:15 |
MM 30.27 |
Hybrid Functionals in an all-electron FLAPW basis: challenges imposed by exa-scale supercomputers — •Matthias Redies, Gregor Michalicek, Christian Terboven, Daniel Wortmann, Matthias Müller, and Stefan Blügel
|
|
|
|
18:15 |
MM 30.28 |
Nonequilibrium dynamics of laser excited SiC: Description of Laser excited SiC with the help of an electronic temperature dependent interatomic potential — •Malwin Xibraku, Bernd Bauerhenne, and Martin Garcia
|
|
|
|
18:15 |
MM 30.29 |
Molecular dynamics study of impact welding processes — •Benedikt Philipp Eggle-Sievers, Tobias Stegmüller und Ferdinand Haider
|
|
|
|
18:15 |
MM 30.30 |
Ab Initio Molecular Dynamics Simulations of Chemical Processes at the Crack Tip — •Tobias Müller and Bernd Meyer
|
|
|
|
18:15 |
MM 30.31 |
Development of an analytic bond-order potential for Fe-Co — •Aleksei Egorov, Aparna Subramanyam, Thomas Hammerschmidt, and Ralf Drautz
|
|
|
|
18:15 |
MM 30.32 |
The Process for Creating A General-Purpose Machine Learned Potential for Silicon Carbide — •Harry Tunstall, James Kermode, and Gabrele Sosso
|
|
|
|
18:15 |
MM 30.33 |
Density functional study of metal and metal-oxide (Cu, Ni, Co, Fe, Mn) nucleation and growth on the anatase TiO2(101) surface — •Leila Kalantari, Fabien Tran, and Peter Blaha
|
|
|
|
18:15 |
MM 30.34 |
Neural network for learning and predicting tight-binding parameters — •Till Hanke, Jürgen Henk, and Ingrid Mertig
|
|
|
|
18:15 |
MM 30.35 |
High-dimensional neural network potential for laser-excited materials — •Pascal Plettenberg, Bernd Bauerhenne, and Martin E. Garcia
|
|
|
|
18:15 |
MM 30.36 |
Application of Machine Learning Interatomic Potentials to Carbon Nanostructures — •Tom Rothe, Erik Lorenz, Gustav Johansson, Fabian Teichert, Daniel Hedman, Andreas Larsson, and Jörg Schuster
|
|
|
|
18:15 |
MM 30.37 |
a Neural Network Potential with electrostatic interaction — •Tsz Wai Ko and Jörg Behler
|
|
|
|
18:15 |
MM 30.38 |
Machine-learning Driven Global Optimization of Atomic Surface Structures — •Sami Kaappa and Karsten Wedel Jacobsen
|
|
|
|
18:15 |
MM 30.39 |
Symmetry-adapted Hamiltonian representations for machine-learning-based tight-binding parametrization — •Michael Luya and Reinhard Maurer
|
|
|
|
18:15 |
MM 30.40 |
X-ray reflectivity of thin films evaluated by neural networks — Thorben Finke and •Uwe Klemradt
|
|
|