DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

MM: Fachverband Metall- und Materialphysik

MM 42: Materials for Energy Storage and Conversion - Functional Materials

MM 42.5: Talk

Wednesday, March 18, 2020, 16:45–17:00, IFW D

The effect of crystallinity of layered transition metal disulfide on the performance of potassium-ion batteries: The case of molybdenum disulfide — •Yulian Dong, Huaping Zhao, and Yong Lei — Institut für Physik & IMN MacroNano* (ZIK), Technische Universität Ilmenau, Ilmenau, Germany

Layer-structured transition metal dichalcogenides (LS-TMDs) are being studied in potassium-ion batteries owing to their structural uniqueness and electrochemical mechanisms. In this work, the dependence of electrochemical performance on the crystallinity of LS-TMDs has been investigated. Taking MoS2 as an example, lower crystallinity can alleviate diffusional limitation in 0.5*3.0 V, where intercalation reaction takes charge in storing K-ions. Higher crystallinity can ensure the structural stability of the MoS2 layers and promote surface charge storage in 0.01*3.0 V, where conversion reaction mainly contributes. The low-crystallized MoS2 exhibits an intercalation capacity (118 mAh/g) and great rate capability (41 mAh/g at 2 A/g), and the high-crystallized MoS2 delivers a high capacity of 330 mAh/g at 1 A/g and retains 161 mAh/g at 20 A/g. It shows that when intercalation and conversion reactions both contribute to store K-ions, higher crystallinity ensures the structural stability of the exfoliated MoS2 basal layers and promotes surface-controlled charge storage.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden