DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

O: Fachverband Oberflächenphysik

O 98: Graphene I: Growth, Structure and Substrate Interaction (joint session O/TT)

O 98.5: Talk

Thursday, March 19, 2020, 11:30–11:45, GER 37

Controlled formation of nanobubbles in graphene — •Pin-Cheng Lin1, Renan Villarreal1, Harsh Bana1, Ken Verguts2,3, Steven Brems3, Stephen de Gendt2,3, Manuel Auge4, Felix Junge4, Hans Hofsäss4, Hossein Ghorbanfekr5, M Fallh5, François Peeters5, Mehdi Neek-Amal5, Chris Van Haesendonck1, and Lino da Costa Pereira11Quantum Solid State Physics, KU Leuven, 3001 Leuven, Belgium — 2Departement Chemie, KU Leuven, 3001 Leuven, Belgium — 3imec, 3001 Leuven, Belgium — 4II. Institute of Physics, University of Göttingen, Göttingen 37077, Germany — 5Department of Physics, University of Antwerp, 2020 Antwerp, Belgium

Strained nanobubbles have been used to engineer the electronic structure of graphene through the creation of pseudomagnetic fields (e.g. via strain imposed by a selected substrate or mechanical actuators), however, they provide limited controllability. Here we report on the controlled formation of noble gas (He, Ne, Ar) nanobubbles in graphene (on various substrates) using ultra-low energy (ULE) ion implantation. ULE ion implantation allows us to precisely tune the number of implanted ions and their kinetic energy, which in turn controls the bubble formation efficiency and bubble density. Our experimental approach is based on scanning tunneling microscopy/spectroscopy (STM/STS), synchrotron X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, among others, complemented by density functional theory (DFT) and molecular dynamics calculations (MD), which give insight into the bubble formation and stability mechanisms.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden