Dresden 2020 – scientific programme
The DPG Spring Meeting in Dresden had to be cancelled! Read more ...
Parts | Days | Selection | Search | Updates | Downloads | Help
PLV: Plenarvorträge
PLV IX
PLV IX: Plenary Talk
Wednesday, March 18, 2020, 14:00–14:45, HSZ 02
Stochastic thermodynamics: Concepts and applications — •Udo Seifert — Universität Stuttgart
For the macroscopic world, classical thermodynamics formulates the laws governing the transformation of various forms of energy into each other. Stochastic thermodynamics extends these concepts to micro- and nano-systems embedded or coupled to a heat bath where fluctuations play a dominant role. Examples are colloidal particles in time-dependent laser traps, single biomolecules manipulated by optical tweezers or AFM tips, and transport through quantum dots. For these systems, exact non-equilibrium relations like the Jarzynski relation, fluctuation theorems and, most recently, a thermodynamic uncertainty relation have been discovered. First, I will introduce the main principles and show a few representative experimental applications. In the second part, I will discuss the universal trade-off between the thermodynamic cost and the precision of any biomolecular, or, more generally, of any stationary non-equilibrium process. By applying this thermodynamic uncertainty relation to molecular motors, I will introduce the emerging field of "thermodynamic inference" where relations from stochastic thermodynamics are used to infer otherwise yet inaccessible properties of nano-scale systems. I will close with recent insights into the minimal requirements for creating coherent oscillations at finite temperature.