DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

SYBD: Symposium Big data driven materials science

SYBD 1: Big Data Driven Materials Science

SYBD 1.5: Hauptvortrag

Dienstag, 17. März 2020, 11:45–12:15, HSZ 02

Deep learning of low-dimensional latent space molecular simulators — •Andrew Ferguson — Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637

The long-time microscopic evolution of molecular systems is governed by the leading eigenfunctions of the transfer operator that propagates the system dynamics through time. The low-dimensional latent space defined by these eigenfunctions parameterize the slow manifold to which the system dynamics are constrained to evolve. A set of three deep neural networks of different architectures trained over short molecular simulation trajectories provides a means to (i) learn the leading transfer operator eigenfunctions, (ii) propagate the dynamics within the encoded latent space, and (iii) decode the latent space back to the all-atom coordinate space. This technique offers a means to train numerical simulators to conduct molecular simulations and estimate thermodynamic and kinetic observables at orders-of-magnitude lower cost than conventional molecular dynamics calculations.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden