Dresden 2020 – wissenschaftliches Programm
Die DPG-Frühjahrstagung in Dresden musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
SYBD: Symposium Big data driven materials science
SYBD 1: Big Data Driven Materials Science
SYBD 1.5: Hauptvortrag
Dienstag, 17. März 2020, 11:45–12:15, HSZ 02
Deep learning of low-dimensional latent space molecular simulators — •Andrew Ferguson — Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637
The long-time microscopic evolution of molecular systems is governed by the leading eigenfunctions of the transfer operator that propagates the system dynamics through time. The low-dimensional latent space defined by these eigenfunctions parameterize the slow manifold to which the system dynamics are constrained to evolve. A set of three deep neural networks of different architectures trained over short molecular simulation trajectories provides a means to (i) learn the leading transfer operator eigenfunctions, (ii) propagate the dynamics within the encoded latent space, and (iii) decode the latent space back to the all-atom coordinate space. This technique offers a means to train numerical simulators to conduct molecular simulations and estimate thermodynamic and kinetic observables at orders-of-magnitude lower cost than conventional molecular dynamics calculations.