DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 10: Nanotubes and Nanoribbons

TT 10.5: Talk

Monday, March 16, 2020, 12:30–12:45, HSZ 204

Correlated Topological States in Graphene Nanoribbon Heterostructures — •Jan-Philip Joost1, Antti-Pekka Jauho2, and Michael Bonitz11CAU Kiel, Germany — 2CNG, DTU Physics, Kongens Lyngby, Denmark

Finite graphene nanoribbon (GNR) heterostructures host intriguing topological in-gap states [1]. These states may be localized either at the bulk edges or at the ends of the structure. Here we show that correlation effects (not included in previous density functional simulations) play a key role in these systems: they result in increased magnetic moments at the ribbon edges accompanied by a significant energy renormalization of the topological end states, even in the presence of a metallic substrate [2]. We present simulations of 7-9-AGNRs based on a Green functions method with GW self-energy applied to an effective Hubbard model. Our computed results for the differential conductance are in excellent agreement with experimental observations [3]. Furthermore, we discover a striking, novel mechanism that causes an energy splitting of the nonzero-energy topological end states for a weakly screened system. We predict that similar effects should be observable in other GNR heterostructures as well.
[1] T. Cao et al., Phys. Rev. Lett. 119, 076401 (2017)
[2] J.-P. Joost, A.-P. Jauho, M. Bonitz, Nano Letters (2019), DOI:10.1021/acs.nanolett.9b04075
[3] D. J. Rizzo et al., Nature 560, 204-208 (2018)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden