DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 23: Nonequilibrium Quantum Many-Body Systems 1 (joint session TT/DY)

TT 23.1: Talk

Tuesday, March 17, 2020, 09:30–09:45, HSZ 204

Exponential damping in perturbed quantum many-body systems — •Jonas Richter1, Fengping Jin2, Lars Knipschild1, Hans De Raedt3, Kristel Michielsen2, Jochen Gemmer1, and Robin Steinigeweg11University of Osnabrück, Germany — 2Forschungszentrum Jülich, Germany — 3University of Groningen, The Netherlands

Given a quantum many-body system and the expectation-value dynamics of some operator, we study how this reference dynamics is altered due to a perturbation of the system’s Hamiltonian. Based on projection operator techniques, we unveil that if the perturbation exhibits a random-matrix structure in the eigenbasis of the unperturbed Hamiltonian, then this perturbation effectively leads to an exponential damping of the original dynamics. Employing a combination of dynamical quantum typicality and numerical linked cluster expansions, we demonstrate that our theoretical findings are relevant for the dynamics of realistic quantum many-body models. Specifically, we study the decay of current autocorrelation functions in spin-1/2 ladder systems, where the rungs of the ladder are treated as a perturbation to the otherwise uncoupled legs. We find a convincing agreement between the exact dynamics and the lowest-order prediction over a wide range of interchain couplings, even if the perturbation is not weak.

[1] J. Richter et al., arXiv:1906.09268.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden