DPG Phi
Verhandlungen
Verhandlungen
DPG

Dresden 2020 – scientific programme

The DPG Spring Meeting in Dresden had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 33: Correlated Electrons: Method Development 1

TT 33.1: Talk

Wednesday, March 18, 2020, 09:30–09:45, HSZ 201

Density functional perturbation theory with DFT+U in the mixed-basis framework — •Rolf Heid — Institute of Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology

DFT+U is a viable tool to improve description of materials, where the standard DFT exchange-correlation potentials fail to catch essential properties of electronic correlation. While phenomenological in nature, it is numerically efficient and also gives access to energy derivatives, e.g. forces and force constants. Most applications to lattice dynamics properties have been based on the direct method (supercells and forces), while the linear response approach has been rarely used.

Here I describe a combination of DFT+U and density functional perturbation theory (DFPT) in the framework of the mixed-basis approach, an efficient method based on norm-conserving pseudopotentials employing a combination of plane waves and tailored local functions for the expansion of the valence states. The DFPT extension of the mixed-basis method [1,2] has been extensively applied in the past. The present DFT+U implementation employs the fully rotationally invariant form [3] in its relativistic extension [4]. Its usefulness is demonstrated for compounds containing 3d or 4f/5f elements.

[1] R. Heid et al., Phys. Rev. B 60, R3709 (1999).

[2] R. Heid et al., Phys. Rev. B 81, 174527 (2010).

[3] A.I. Liechtenstein et al., Phys. Rev. B 52, R5467 (1995).

[4] A. B. Shick et al., Europhys. Lett. 69, 588 (2005).

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Dresden