DPG Phi
Verhandlungen
Verhandlungen
DPG

Hannover 2020 – scientific programme

The DPG Spring Meeting in Hannover had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

A: Fachverband Atomphysik

A 13: Clusters II (joint session MO/A)

A 13.3: Talk

Tuesday, March 10, 2020, 14:30–14:45, f142

Cryogenically Cooled Beams of Bio-Nanoparticles — •Lena Worbs1,2, Jannik Lübke1,2,3, Armando Estillore1, Amit K. Samanta1, and Jochen Küpper1,2,31Center for Free-Electron Laser Science, Deutsches-Elektronen Synchrotron DESY, Hamburg — 2Fachbereich Physik, Universität Hamburg — 3Center for Ultrafast Imaging, Hamburg

Coherent diffractive imaging at free-electron lasers promises to allow the reconstruction of the three-dimensional molecular structures of isolated particles at atomic resolution [1]. However, because of the typically low signal to noice ratio, this requires the collection of a large amount of diffraction patterns. Since every intercepted particle is destroyed by the intense x-ray pulse, a new and preferably identical sample particle has to be delivered into every pulse.

We present novel approaches for the production of high density particle beams of shock-frozen bio-nanoparticles using a cryogenic buffer-gas cooling technique [2]. We have also developed a numerical simulation infrastructure that allows quantitative simulation of isolated particle trajectories inside the buffer-gas cell. The cryogenically-cooled nanoparticle beams are characterized using laboratory-based light-scattering [3]. To further improve the resulting particle beam, an aerodynamic lens is implemented to increase its density.

[1] M. M. Seibert, et al., Nature 470, 78 (2011).

[2] A. K. Samanta, et al., arXiv:1910.12606 [physics.bio-ph]

[3] L. Worbs, et al., Opt. Expr., arXiv:1909.08922 [physics.optics]

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Hannover