DPG Phi
Verhandlungen
Verhandlungen
DPG

Hannover 2020 – wissenschaftliches Programm

Die DPG-Frühjahrstagung in Hannover musste abgesagt werden! Lesen Sie mehr ...

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MO: Fachverband Molekülphysik

MO 18: Cold Molecules II (joint session Q/MO)

MO 18.3: Vortrag

Donnerstag, 12. März 2020, 14:45–15:00, f442

Stability of quantum degenerate Fermi gases of tilted polar molecules — •Vladimir Veljić1, Axel Pelster2, and Antun Balaž11Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Serbia — 2Physics Department and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany

A recent experimental realization of quantum degenerate gas of 40K87Rb molecules opens up prospects of exploring strongly dipolar Fermi gases and many-body phenomena arising in that regime [1]. Here we derive a mean-field variational approach based on the Wigner function for the description of ground-state properties of such systems [2,3]. We show that the stability of dipolar fermions in a general harmonic trap is universal as it only depends on the trap aspect ratios and the dipoles orientation. We calculate the species-independent stability diagram and the deformation of the Fermi surface (FS) for polarized molecules, whose electric dipoles are oriented along a preferential direction. Compared to atomic magnetic species [2], the stability of a molecular electric system turns out to strongly depend on its geometry and the FS deformation significantly increases [3]. We also show that tuning the trap frequencies appropriately reduces the 3D sytem to a quasi-2D system of either a pancake- or a cigar-shaped gas cloud, which turn out to have smaller stability regions.

[1] L. De Marco et al., Science 363, 853 (2019)

[2] V. Veljić et al., New J. Phys. 20, 093016 (2018)

[3] V. Veljić et al., Phys. Rev. Res. 1, 012009 (2019)

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2020 > Hannover