Die DPG-Frühjahrstagung in Hannover musste abgesagt werden! Lesen Sie mehr ...
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 22: Posters: Quantum Optics and Photonics II
Q 22.32: Poster
Dienstag, 10. März 2020, 16:30–18:30, Empore Lichthof
Optimal control for cat state preparation — •Matthias G. Krauss1, Sabrina Patsch1,2, Daniel M. Reich1,2, and Christiane P. Koch1,2 — 1Universität Kassel, Theo. Physik III, Heinrich-Plett-Str. 40, 34132 Kassel, Germany — 2Freie Universität Berlin, Theo. Physik, Arnimallee 14, 14195 Berlin, Germany
Schrödinger cat states are non-classical superposition states that are useful in quantum information science, for example for computing or sensing. Optimal control theory provides a set of powerful tools for preparing such superposition states, for example in experiments with superconducting qubits [Ofek et al., Nature 536, 441445 (2016)]. In general, the preparation of specific cat states is considered to be a hard problem in terms of numerical effort [Kallush et al., New J. Phys. 16, 015008 (2014)]. Since many applications do not rely on a particular cat state, it can be beneficial to optimize towards an arbitrary n-fold cat state instead. In particular, we are interested in two types of cat states, a superposition of two coherent states in a harmonic oscillator and a superposition of two spin-coherent states in a spin system. We propose functionals for either system, which provide more freedom to the optimization algorithms, in comparison to state-to-state functionals. To analyze the practical performance of these functionals, we exemplify their use in conjunction with Krotov’s method [Reich et al., J. Chem. Phys. 136, 104103 (2012)].