DPG Phi
Verhandlungen
Verhandlungen
DPG

Hannover 2020 – scientific programme

The DPG Spring Meeting in Hannover had to be cancelled! Read more ...

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 22: Posters: Quantum Optics and Photonics II

Q 22.65: Poster

Tuesday, March 10, 2020, 16:30–18:30, Empore Lichthof

Nonequilibrium density wave order in driven atom-cavity system — •Christoph Georges, Hans Keßler, Phatthamon Kongkhambut, and Andreas Hemmerich — Institut für Laser- Physik, Universität Hamburg, 22761 Hamburg, Germany

Competing Phases and their driving are subject of interest in the field of light-induced phase in heavy-fermion systems [1] such as in light-induced superconductivity. However, because of their complex nature, materials like cuprates are delicate to theoretical grasp. Recent efforts lead to quantum gas experiments emulating simplified models for solid-state phenomena.
An ultracold gas of atoms inside a high-finesse optical cavity is one example of a versatile platform for exploring non-equilibrium phenomena and dynamical driven phase transitions in many-body systems [2]. We observe the formation of a new competing non-equilibrium density wave order in a resonantly driven Bose-Einstein Condensate coupled to the light field of a high finesse cavity. Without driving, the system organizes in a density wave that supports Braggscatting into the cavity and stabilizes itself. Meanwhile, when driving is applied, it suppresses this density wave, and a non-equilibrium density wave can be excited. This new density wave does not support further scattering into the cavity. We report on this new emerging phase in respect of driving parameters and its temporal evolution.
[1] Kogar et al. Nat. Phys. s41567-019-0705-3 (2019)
[2] C. Georges et al. Phys. Rev. Lett. 121, 220405 (2018)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2020 > Hannover