DPG Phi
Verhandlungen
Verhandlungen
DPG

BPCPPDYSOE21 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 10: Granular Physics 2 - organized by Matthias Sperl (Köln)

DY 10.2: Vortrag

Montag, 22. März 2021, 11:20–11:40, DYc

Machine learning aided tracking of rod-like particles in 3D microgravity experiments on granular gases — •Dmitry Puzyrev, Kirsten Harth, Torsten Trittel, and Ralf Stannarius — Institute of Physics, Otto von Guericke University, Magdeburg, Germany

Granular gases are nonlinear systems which exhibit fascinating dynamical behavior far from equilibrium, including unusual cooling properties, clustering and violation of energy equipartition. Our investigation is focused on 3D microgravity experiments with dilute ensembles of rod-like particles, where the mean free path is substantially reduced as compared to gases of spherical grains of identical volume fraction [1]. Moreover, elongated particles provide the possibility to efficiently study the energy transfer between the translational and rotational degrees of freedom.

One particular problem is the reliable detection and tracking of the rods in 3D, especially at volume fractions beyond the very dilute limit. We have developed a Machine Learning aided approach [2] to the experimental data analysis which allows to recognize and track individual particles in ensemble.

[1] K. Harth et al., Free cooling of a granular gas of rodlike particles in microgravity, Phys. Rev. Lett., 120 (2018), 214301

[2] Puzyrev et al., Machine learning for 3D particle tracking in granular gases, Microgravity Sci. Technol., 32 (2020), 897

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2021 > BPCPPDYSOE21