Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

T: Fachverband Teilchenphysik

T 38: Data analysis, information technology II

Dienstag, 16. März 2021, 16:00–18:30, Tm

16:00 T 38.1 Composition Study of Cosmic Rays with IceCube Observa-tory using Graph Neural Networks — •Paras Koundal for the IceCube collaboration
16:15 T 38.2 Deep-Learning-Based Reconstruction of Cosmic-Ray Properties From Extensive Air Shower MeasurementsMartin Erdmann, Jonas Glombitza, Berenika Idaszek, and •Niklas Langner
16:30 T 38.3 Using a conditional Invertible Neural Network to determine the parameters of ultra-high-energy cosmic ray sourcesTeresa Bister, Martin Erdmann, and •Josina Schulte
16:45 T 38.4 Muon bundle reconstruction with KM3NeT/ORCA using graph convolutional networks — •Stefan Reck for the ANTARES-KM3NeT-Erlangen collaboration
17:00 T 38.5 CNN classification and regression for ANTARES — •Nicole Geißelbrecht for the ANTARES-KM3NeT-Erlangen collaboration
17:15 T 38.6 graFEI: Full Event Interpretation using Graph Neural Networks at Belle II — •Lea Reuter, James Kahn, Ilias Tsaklidis, and Pablo Goldenzweig
17:30 T 38.7 Pixel Detector Background Generation using Generative Adversarial Networks at Belle II — •Hosein Hashemi, Thomas Kuhr, Martin Ritter, Nikolai Hartman, and Matei Srebre
17:45 T 38.8 GANplifying Event SamplesAnja Butter, •Sascha Diefenbacher, Gregor Kasieczka, Benjamin Nachman, and Tilman Plehn
18:00 T 38.9 Fast Simulation of High Granularity Calorimeters with Deep Generative Models — •Peter McKeown
18:15 T 38.10 Optimization of Selective Background Monte Carlo Simulation with Graph Neural Networks at Belle II — •Boyang Yu, Thomas Kuhr, and Nikolai Hartmann
100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2021 > Dortmund