DPG Phi
Verhandlungen
Verhandlungen
DPG

SAMOP 2021 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

QI: Fachverband Quanteninformation

QI 8: Quantum Information: Poster (joint session QI/Q)

QI 8.14: Poster

Wednesday, September 22, 2021, 16:30–18:30, P

Vibrationally-decoupled cryogenic surface-electrode ion trap for scalable quantum computing and simulation — •Niklas Orlowski1, Timko Dubielzig1, Sebastian Halama1, Chloe Allen-Ede1, Niels Kurz1, Celeste Torkzaban1, and Christian Ospelkaus1,21Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany — 2Physikalisch Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

We present an overview of the necessary experimental infrastructure to perform experiments with an integrated microwave near-field surface-electrode ion trap at cryogenic temperatures for quantum logic applications [1]. We describe the measures to isolate the ions from environmental influences, like vibrational decoupling and XUHV-conditions. We discuss the loading scheme involving lasers for ablation and ionization as well as Doppler cooling, repumping and detection of 9Be+-ions. State preparation and manipulation procedures with precisely timed and tuned microwave and laser pulses are presented. Finally, we report on thermal stabilization as required for reproducible radial sideband spectroscopy. The achieved stability of the radial sideband modes will allow for implementation of microwave sideband-cooling and microwave quantum gates [2].
[1] Dubielzig et al. RSI 92.4 (2021): 043201
[2] Zarantonello et al. PRL 123, 260503

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2021 > SAMOP