DPG Phi
Verhandlungen
Verhandlungen
DPG

SKM 2021 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 16: Machine Learning in Dynamical Systems and Statistical Physics (joint session DY/BP)

DY 16.5: Vortrag

Freitag, 1. Oktober 2021, 12:15–12:30, H2

Investigating the role of Chaos and characteristic time scales in Reservoir ComputingMarvin Schmidt1,2, Yuriy Mokrousov1,3, Stefan Blügel1,3, Abigail Morrison2,3,4, and •Daniele Pinna1,31Peter Grünberg Institute (PGI-1), Wilhelm-Johnen-Straße, 52428 Jülich, Germany — 2Institute for Theoretical Neuroscience Institute of Neuroscience and Medicine (INM-6), Wilhelm-Johnen-Straße, 52428 Jülich, Germany — 3Institute for Advanced Simulation (IAS-6), Wilhelm-Johnen-Straße, 52428 Jülich, Germany — 4Computational and Systems Neuroscience & JARA-Institut Brain structure-function relationships (INM-10), Wilhelm-Johnen-Straße, 52428 Jülich, Germany

Reservoir Computing (RC) dynamical systems must retain information for long times and exhibit a rich representation of their driving. This talk highlights the importance of matching between input and dynamical timescales in RC systems close to chaos. We compare a chain of Fermi-Pasta-Ulam-Tsingou anharmonic oscillators and a sparsely connected network of spiking excitatory/inhibitory neurons. The first is toy model for magnetic spin-wave reservoirs while the latter that of a biological neural net. Both systems are shown to rely on a close matching of their relaxation timescales with the driving input signal's frequency in order to memorize and make precise use of the information injected. We argue that this is a general property of RC systems. We acknowledge the HGF-RSF project TOPOMANN for funding.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2021 > SKM