DPG Phi
Verhandlungen
Verhandlungen
DPG

SKM 2021 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MA: Fachverband Magnetismus

MA 15: Posters Magnetism IV

MA 15.20: Poster

Donnerstag, 30. September 2021, 13:30–16:30, P

Non-hysteretic first-order ferromagnetic transitions by itinerant electron feedback and Fermi surface topology change — •Eduardo Mendive Tapia1,2, Durga Paudyal3, Leon Petit4, and Julie Staunton21Max-Planck-Institut für Eisenforschung, 40237 Düsseldorf, Germany — 2University of Warwick, CV4 7AL, Coventry, UK — 3The Ames Laboratory, U.S. Dept of Energy, Iowa State University, USA — 4Daresbury Laboratory, Warrington, UK

Refrigeration and air conditioning are crucial in modern life and in adapting to climate change. Discontinuous magnetic phase transitions have great promise for new, energy efficient and environmentally friendly solid-state cooling technology. Huge exploitable entropy and temperature changes typically result from the coupling between a material’s spin polarized interacting electrons and the crystal structure. Such magnetostructurally driven cooling, however, is nearly always degraded by hysteresis. We present an ab-initio theory which can find mechanisms for first-order magnetic phase transitions that are purely electronic in origin [1], thus avoiding the need for magnetostructural effects. We show that this electronic mechanism arises from an itinerant electron feedback to magnetic order. In particular, it is demonstrated that a topological change of the Fermi surface explains the hysteresis free giant cooling properties recently measured in Eu2In [2]. This work is funded by the EPSRC (UK) and the U.S. Dept of Energy, and forms part of the PRETAMAG project (University of Warwick).

[1] E Mendive-Tapia and J Staunton, PRB 101, 174437 (2020)

[2] F Guillou et al., Nat. Comm. 9, 2925 (2018)

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2021 > SKM