Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
TT: Fachverband Tiefe Temperaturen
TT 27: Topological Insulators and Semimetals (joint session TT/KFM)
TT 27.3: Vortrag
Freitag, 1. Oktober 2021, 10:30–10:45, H7
Symmetry-enforced topological nodal planes — Marc A. Wilde1,2, Matthias Dodenhöft1, Arthur Niedermayr1, Andreas Bauer1,2, •Moritz M. Hirschmann3, Kirill Alpin3, Andreas P. Schnyder3, and Christian Pfleiderer1,2,4 — 1Physik Department, Technische Universität München, Garching, Germany. — 2Centre for QuantumEngineering (ZQE), Technische Universität München, Garching, Germany. — 3Max Planck Institute for Solid State Research, Stuttgart, Germany. — 4MCQST, Technische Universität München, Garching, Germany.
Topological semimetals and metals may contain nodal points or lines, i.e., zero- or one-dimensional crossings in the energy bands. In the present work we discuss an extension to two-dimensional nodal features. These nodal planes are enforced in crystals with certain nonsymmorphic space groups. We specify the necessary conditions for the existence of nodal planes and consider in the process paramagnetic as well as magnetic space groups. Based on an analysis of symmetry eigenvalues we identify space groups that lead to nodal planes with a non-zero Chern number. Our arguments are supported by minimal models and explicit calculation of the topological invariants. Furthermore, we have identified a number of materials with topological nodal planes. Among them is the ferromagnetic phase of MnSi, for which we show that the symmetry-enforced topological nodal planes exist, using de Haas-van Alphen spectroscopy and density functional theory calculations.
[1] M.A. Wilde et al., Nature 594, 374-379 (2021)