DPG Phi
Verhandlungen
Verhandlungen
DPG

SurfaceScience21 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

O: Fachverband Oberflächenphysik

O 109: Poster Session VIII: Poster to Mini-Symposium: Machine learning applications in surface science III

Thursday, March 4, 2021, 13:30–15:30, P

13:30 O 109.1 Development of a Neural Network Potential for Metal-Organic Frameworks — •Marius Herbold and Jörg Behler
13:30 O 109.2 Predicting hydration layers on surfaces using deep learning — •Yashasvi S Ranawat, Ygor M Jaques, and Adam S Foster
  13:30 O 109.3 The contribution has been withdrawn.
13:30 O 109.4 Excitonic Wave Function Reconstruction from Near-Field Spectra Using Machine Learning Techniques — •Fulu Zheng, Sidhartha Nayak, and Alexander Eisfeld
13:30 O 109.5 Prediction of energetics in nucleation and non-equilibrium growth using machine learning — •Thomas Martynec, Sabine H. L. Klapp, and Stefan Kowarik
13:30 O 109.6 Predicting the activity and selectivity of bimetallic metal catalysts for ethanol reforming using machine learning — •Nongnuch Artrith
13:30 O 109.7 Using Neural Evolution algorithm to generate disordered High Entropy Alloys structures — •Conrard Giresse TETSASSI FEUGMO, Kevin Ryczko, Abu Anand, Chandra Singh, and Isaac Tamblyn
13:30 O 109.8 Automatic image evaluation of aberration-corrected HRTEM images of 2D materials. — •Christopher Leist, Haoyuan Qi, and Ute Kaiser
100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2021 > SurfaceScience21