DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

A: Fachverband Atomphysik

A 18: Precision Measurements and Metrology V (joint session Q/A)

A 18.2: Talk

Wednesday, March 16, 2022, 14:15–14:30, Q-H11

Highly stable transportable UV laser system for an optical clock — •Benjamin Kraus1,2, Stephan Hannig1,2, Sofia Herbers1,2, Fabian Dawel1, Johannes Kramer1, Constantin Nauk1,2, Christian Lisdat1, and Piet O. Schmidt1,2,31Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany — 2DLR-Institute for Satellite Geodesy and Inertial Sensing, 30167 Hannover, Germany — 3Leibniz Universität Hannover, Institut für Quantenoptik, 30167 Hannover, Germany

Optical atomic clocks provide the most precise frequency standards. They enable high accuracy tests of fundamental physics, relativistic geodesy, and a possible future redefinition of the SI second. For side-by-side clock comparisons, accurate transportable optical clocks are necessary. We present a rack-integrated highly stable clock laser system at 267.4 nm for a transportable Al+ clock. The system consists of a fibre laser at 1069,6 nm locked to a cavity designed to reach fractional frequency instabilities as low as 10-16. Two sequential single-pass second harmonic generation stages are hermetically sealed inside an aluminium box to form a robust, compact, and stable fibre-coupled frequency quadrupling module. The setup is interferometrically phase-stabilized, enabling second long probe times.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Erlangen