DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

MO: Fachverband Molekülphysik

MO 14: Photochemistry II

MO 14.4: Talk

Wednesday, March 16, 2022, 15:15–15:30, MO-H6

Photochemistry of the Benzaldehyde-BCl3 Complex — •Martin Peschel1, Piotr Kabacinski2, Daniel Schwinger3, Erling Thyrhaug4, Thomas Knoll1, Giulio Cerullo2, Thorsten Bach3, Jürgen Hauer4, and Regina de Vivie-Riedle11Department Chemie, Ludwig-Maximilians-Universität München — 2IFN-CNR and Dipartimento di Fisica, Politecnico di Milano — 3Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München — 4Professur für Dynamische Spektroskopien, Fakultät für Chemie, Technische Universität München

The excited state properties of α,β-enones can be altered by complexation with a Lewis acid to enable otherwise unaccesible photochemical transformations.[1] After excitation, α,β-enones relax to a triplet state from which subsequent reactions can occur. This ππ* triplet is stabilized by interaction with a Lewis acid and studies using UV/Vis transient absorption spectroscopy and quantum chemical calculations show that its formation only takes a few picoseconds.[2] We expected this behavior to also occur in the aromatic α,β-enone benzaldehyde when interacting with the Lewis acid BCl3. Instead, non-adiabatic dynamics calculations showed ultrafast dissociation of a chlorine atom. The resulting benzyl radical could be identified in a theory-guided UV/Vis ultrafast transient absorption experiment and was found to be surprisingly long lived. This led to the discovery of a novel chemical reaction of benzaldehyde which uses the radical chemistry of chlorine.

[1] Angew. Chem. Int. Ed. 2018, 57, 14338-14349.

[2] Angew. Chem. Int. Ed. 2021, 60, 10155-10163.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Erlangen