DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 10: Quantum Information (Concepts and Methods) II

Q 10.5: Talk

Monday, March 14, 2022, 17:30–17:45, Q-H12

On Quantum Cats and How to Control Them — •Matthias G. Krauss1,2, Daniel M. Reich1,2, and Christiane P. Koch1,21Universität Kassel, Kassel, Germany — 2Freie Universität, Berlin, Germany

Schrödinger cat states are non-classical superposition states that are useful in quantum information science, for example for computing or sensing. Optimal control theory provides a set of powerful tools for preparing such superposition states, for example in experiments with superconducting qubits [Ofek, et al. Nature 536, 2016]. In general, the preparation of specific cat states is considered to be a hard problem [Kallush et al. New J. Phys. 16, 2014]. Since many applications do not rely on a particular cat state, it can be beneficial to optimize towards arbitrary cat states instead. We derive optimization functionals that target the cat properties without prescribing a specific cat state. To analyze the practical performance of these functionals, we exemplify their use in conjunction with Krotov’s method [Reich et al. J. Chem. Phys. 136, 2012]. In particular, we analyze the quantum speed limit for generating entangled cat states in a Jaynes-Cummings model and test their robustness under dissipation.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Erlangen