DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2022 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 19: Ultra-cold atoms, ions and BEC I (joint session A/Q)

Q 19.5: Vortrag

Dienstag, 15. März 2022, 11:30–11:45, A-H2

Machine learning universal bosonic functionals — •Benavides-Riveros Carlos L.1, Schmidt Jonathan2, and Fadel Matteo31Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany — 2Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany — 3Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland

The one-body reduced density matrix γ plays a fundamental role in describing and predicting quantum features of bosonic systems, ultra-cold gases or Bose-Einstein condensates. The recently proposed reduced density matrix functional theory for bosonic ground states establishes the existence of a universal functional F[γ] that recovers quantum correlations exactly. Based on a novel decomposition of γ, we have developed a method to design reliable approximations for such universal functionals [1]. Our results demonstrate that for translational invariant systems the constrained search approach of functional theories can be transformed into an unconstrained problem through a parametrization of a Euclidian space. This simplification of the search approach allows us to use standard machine learning methods to perform a quite efficient computation of both F[γ] and its functional derivative. For the Bose-Hubbard model, we present a comparison between our approach and the quantum Monte Carlo method.

[1] Phys. Rev. Research 3, L032063 (2021).

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Erlangen