DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 33: Quantum Gases

Q 33.2: Talk

Wednesday, March 16, 2022, 14:15–14:30, Q-H10

Quantum gas microscopy of ultracold cesium atoms — •Alexander Impertro1,2,3, Julian Wienand1,2,3, Sophie Häfele1,2,3, Till Klostermann1,2,3, Hendrik von Raven1,2,3, Scott Hubele1,2,3, Cesar Cabrera1,2,3, Immanuel Bloch1,2,3, and Monika Aidelsburger1,21Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany — 2Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 München, Germany — 3MPI für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany

Ultracold cesium atoms provide a promising experimental platform for quantum simulation of topological many-body phases in the presence of interactions. This is due to a convenient control of the scattering length via a low-lying Feshbach resonance and the possibility to engineer state-dependent lattices. Additionally, high-resolution imaging techniques allow the probing of novel experimental observables at the single-atom and single-site level. In this new quantum gas microscope, we prepare a 2D sample of ultracold cesium atoms in optical lattices and probe them using fluorescence imaging. As a first step towards studying topological quantum phases, we demonstrate the preparation of a bosonic Mott-insulating state. Additionally, we present how we employ machine learning techniques to reconstruct the site-resolved lattice occupation despite a lattice spacing that is more than a factor of two smaller than the imaging resolution.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Erlangen