DPG Phi
Verhandlungen
Verhandlungen
DPG

Erlangen 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 36: Optomechanics II

Q 36.1: Talk

Wednesday, March 16, 2022, 14:00–14:15, Q-H13

Stationary entanglement of feedback-cooled nanoparticles — •Henning Rudolph, Klaus Hornberger, and Benjamin Stickler — Faculty of Physics, University of Duisburg-Essen, Germany

The motion of levitated nanoparticles has recently been cooled into the quantum groundstate by electric feedback [1]. In this talk we demonstrate how two interacting nanoparticles, co-levitated in adjacent tweezer traps, exhibit stationary entanglement if the individual particles can be detected and feedback cooled. We find that the stationary two-particle state can be entangled if the detection efficiency of the feedback loop exceeds the ratio of the mechanical normal mode frequencies. As an important experimental constraint, we show that the degree of entanglement decreases with increasing bandwidth of the signal-to-feedback filter.

[1] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek, S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, M. Aspelmeyer, Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373-377 (2021).

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Erlangen