DPG Phi
Verhandlungen
Verhandlungen
DPG

Heidelberg 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

AKPIK: Arbeitskreis Physik, moderne Informationstechnologie und Künstliche Intelligenz

AKPIK 4: Deep Learning

Thursday, March 24, 2022, 16:15–18:30, AKPIK-H13

16:15 AKPIK 4.1 Using Graph Neural Networks for improving Cosmic-Ray Composition Analysis at IceCube Observatory — •Paras Koundal for the IceCube collaboration
16:30 AKPIK 4.2 Amplifying Calorimeter Simulations with Deep Neural Networks — •Sebastian Guido Bieringer, Anja Butter, Sascha Diefenbacher, Engin Eren, Frank Gaede, Daniel Hundshausen, Gregor Kasieczka, Benjamin Nachman, Tilman Plehn, and Mathias Trabs
16:45 AKPIK 4.3 Deep Learning-based Imaging in Radio Interferometry — •Felix Geyer and Kevin Schmidt
17:00 AKPIK 4.4 Binary Black Hole Parameter Reconstruction using Deep Neural Networks — •Markus Bachlechner, David Bertram, and Achim Stahl
17:15 AKPIK 4.5 A Recurrent Neural Network for Radio Imaging — •Stefan Fröse and Kevin Schmidt
17:30 AKPIK 4.6 Measurement of the Mass Composition using the Surface Detector of the Pierre Auger Observatory and Deep LearningMartin Erdmann, •Jonas Glombitza, and Niklas Langner for the Pierre Auger collaboration
17:45 AKPIK 4.7 Graph Neural Networks for Low Energy Neutrino Reconstruction at IceCube — •Rasmus Ørsøe
18:00 AKPIK 4.8 Event-by-event estimation of high-level observables with data taken by the Surface Detector of the Pierre Auger Observatory using deep neural networks — •Steffen Hahn, Markus Roth, Darko Veberic, David Schmidt, Ralph Engel, and Brian Wundheiler
18:15 AKPIK 4.9 Reconstruction of primary particle energy from data taken by the Surface Detector of the Pierre Auger Observatory using deep neural networksRalf Engel, Markus Roth, Darko Veberic, David Schmidt, Steffen Hahn, and •Fiona Ellwanger for the Pierre Auger collaboration
100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Heidelberg