Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
T: Fachverband Teilchenphysik
T 2: QCD (Theorie) 1
T 2.6: Vortrag
Montag, 21. März 2022, 17:30–17:45, T-H15
Invertible Networks for the Matrix Element Method — Anja Butter1, •Theo Heimel1, Till Martini2, Sascha Peitzsch2, and Tilman Plehn1 — 1Institut für Theoretische Physik, Universität Heidelberg, Germany — 2Institut für Physik, Humboldt-Universität zu Berlin, Germany
For many years, the matrix element method has been considered the perfect approach to LHC inference. We show how conditional neural networks can be used to unfold detector effects and initial-state QCD radiation, to provide the hard-scattering information for this method. We illustrate our approach for the CP-violating phase of the top Yukawa coupling in associated Higgs and single-top production.