DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

CPP: Fachverband Chemische Physik und Polymerphysik

CPP 9: Modeling and Simulation of Soft Matter (joint session CPP/DY)

CPP 9.1: Vortrag

Montag, 5. September 2022, 15:00–15:15, H39

Machine Learning of consistent thermodynamic models using automatic differentiation — •David Rosenberger1, Kipton Barros2, Timothy Germann2, and Nicholas Lubbers21Freie Universität Berlin, Berlin, Germany — 2Los Alamos National Laboratory, Los Alamaos, NM, USA

Instead of fitting suitable analytical expressions to thermophysical data, we propose to combine automatic differentiation and artificial neural networks (ANNs) to obtain complex equations of state (EOS) for arbitrary systems. Rather than training directly on the properties of interest, we train an ANN on a model free energy whose partial derivatives match the thermophysical properties measured in experiment. We show that this method is advantageous over direct learning of thermodynamic properties, in terms of both accuracy and the exact preservation of the Maxwell relations. Furthermore, the method can implicitly solve the integration problem of computing the free energy of a system without explicit integration given appropriate data to learn from.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg