DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

DY: Fachverband Dynamik und Statistische Physik

DY 51: Machine Learning in Dynamics and Statistical Physics (joint session DY/SOE)

DY 51.1: Vortrag

Freitag, 9. September 2022, 10:00–10:15, H19

Reinforcement learning of optimal active particle navigation — •Mahdi Nasiri and Benno Liebchen — Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany

In sufficiently complex environments, there is no simple way to determine the fastest route of an active particle that can freely steer towards a given target. In fact, while classical path planning algorithms (e.g. A*, Dijkstra) tend to fail to reach the global optimum, analytical approaches are incapable of handling generic complex environments. To overcome this gap in the literature, in the present work, we develop a policy gradient-based deep reinforcement learning method that employs a hybrid continuum-based representation of the environment and allows, for the first time, to determine the asymptotically optimal path in complex environments. Our results provide a key step forward towards a universal path planner for future intelligent active particles and nanorobots with potential applications in microsurgery as well as in drug and gene delivery.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg