DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

KFM: Fachverband Kristalline Festkörper und deren Mikrostruktur

KFM 18: Focus Session: Diamond and related dielectric materials

KFM 18.4: Talk

Wednesday, September 7, 2022, 16:10–16:30, H5

Development diamond based Kinetic Inductance Detectors — •Francesco Mazzocchi, Dirk Strauss, and Theo Scherer — Karlsruhe Institute Of Technology

Kinetic Inductance Detectors (KIDs) have proven themselves as a very versatile cryogenic detector technology capable of applications in various fields due to their flexibility of design, sensibility and ease of production. We have recently proposed a polarization sensitive Lumped Elements KID as sensor for an innovative polarimetric diagnostics based on quantum cascade lasers (QCL) for application in the nuclear fusion. Each detector unit is composed by 4 pixels arranged at the vertices of a square, each pixels being sensible to only one polarization direction. The current system is based on niobium nitride (NbN) superconductor over High Resistivity Silicon (HRSi) substrate. Such material delivers good performances but its relatively high dielectric constant and loss tangent lead to increased substrate losses. Using a transparent substrate may improve this aspect and also the radiation resistance of such devices. Diamond is the substrate of choice, being a material already widely studied and used in the fusion environment as high power microwave window, due to its outstanding optical and mechanical performances. In this work we present the preliminary design study for a diamond based Kinetic Inductance Detector and subsequent characterization measurements of the first prototypes.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg