Regensburg 2022 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
KFM: Fachverband Kristalline Festkörper und deren Mikrostruktur
KFM 2: Focus Session: Defects and Interfaces in Multiferroics 1
KFM 2.5: Hauptvortrag
Montag, 5. September 2022, 11:15–11:45, H5
Charged Higher Order Topologies in Room Temperature Magnetoelectric Multiferroic Thin Films — •Shelly Conroy1,2, Kalani Moore2, Sinead Griffin3, Lynette Keeney4, and Eoghan O'Connell2 — 1Imperial College London, London, United Kingdom — 2University of Limerick, Limerick, Ireland — 3Lawrence Berkeley National Laboratory, Berkeley, USA — 4Tyndall National Institute, Cork, Ireland
Multiferroic topologies are an emerging solution for future low-power magnetic nanoelectronics due to their combined tuneable functionality and mobility. Here, we show that in addition to being magnetoelectric multiferroic at room temperature, thin film Aurivillius phase Bi6TixFeyMnzO18 is an ideal material platform for both domain wall and vortex topology based nanoelectronic devices. Utilising atomic resolution electron microscopy and atom probe tomography, we reveal the presence and structure of 180 type charged head-to-head and tail-to-tail domain walls passing throughout the thin film. Theoretical calculations confirm the sub-unit cell cation site preference and charged domain wall energetics for Bi6TixFeyMnzO18. Finally, we show that polar vortex type topologies also form at out-of-phase boundaries of stacking faults when internal strain and electrostatic energy gradients are altered. This study could pave the way for controlled polar vortex topology formation via strain engineering in other multiferroic thin films. Moreover, these results confirm the sub-unit-cell topological features play an important role in controlling the charge and spin state of Aurivillius phase films and other multiferroic heterostructures.