DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

KFM: Fachverband Kristalline Festkörper und deren Mikrostruktur

KFM 20: Perovskite and Photovoltaics 2 (joint session HL/CPP/KFM)

KFM 20.4: Vortrag

Mittwoch, 7. September 2022, 15:45–16:00, H34

Investigating underlying mechanisms of K doping on stability of single- and mixed-cation perovskite solar cells with experimental and computational informed modellingSaied Mollavali, Mohammad Moaddeli, and •Mansour Kanani — Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

Recent studies revealed that the interstitial occupancy of potassium in single/mixed-cation based perovskite structures could hinder the ion migration mechanisms near interfaces, and therefore leads to a better structural stability. However, the underlying stability enhancement mechanisms and probable side effects of additional K atoms in corporate with other organic/inorganic constituents, with a long-range electronic bonding character, is not clear completely. In this study, the effect of doping K on the structural, morphological, electronic, and optical properties of different perovskite structures is investigated experimentally and computationally. The beneficial effect of interstitial K atom on long-range bonding of I atoms with organic molecules is observed. Furthermore, no degradation from additional K is detected for specific range of doping. This result opens a new insight on constructive impact of inorganic dopant on stability issue in perovskite solar cells. SEM, XRD, Photoluminescence and optical absorbance analysis were performed on the perovskite layer. The one layer-based experimental data incorporation with DFT based results were informed into the SCAPS-1D solar cell simulator package to predict cell efficiency, systematically.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg