Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MM: Fachverband Metall- und Materialphysik

MM 34: Data Driven Materials Science: Interatomic Potentials / Reduced Dimensions

Donnerstag, 8. September 2022, 15:45–18:30, H45

15:45 MM 34.1 Constructing Training Sets for Transferable Moment Tensor Potentials: Application to Defects in Bulk Mg — •Marvin Poul, Liam Huber, Erik Bitzek, and Joerg Neugebauer
  16:00 MM 34.2 The contribution has been withdrawn.
16:15 MM 34.3 Take Two: Δ-Machine Learning for Molecular Co-Crystals — •Simon Wengert, Gábor Csányi, Karsten Reuter, and Johannes T. Margraf
16:30 MM 34.4 Magnetic Atomic Cluster Expansion and application to Iron — •Matteo Rinaldi, Matous Mrovec, and Ralf Drautz
16:45 MM 34.5 Kernel Charge Equilibration: Learning Charge Distributions in Materials and Molecules — •Martin Vondrak, Nikhil Bapat, Hendrik H. Heenen, Johannes T. Margraf, and Karsten Reuter
  17:00 15 min. break
17:15 MM 34.6 Machine Learning of ab-initio grain boundary Segregation Energies — •Christoph Dösinger, Daniel Scheiber, Oleg Peil, Vsevolod Razumovskiy, Alexander Reichmann, and Lorenz Romaner
17:30 MM 34.7 Stability of binary precipitates in Cu-based alloys investigated through active learning and quantum computing — •Angel Diaz Carral, Xiang Xu, Azade Yazdan Yar, Siegfried Schmauder, and Maria Fyta
17:45 MM 34.8 How to teach my deep generative model to create new RuO2 surface structures? — •Patricia König, Hanna Türk, Yonghyuk Lee, Chiara Panosetti, Christoph Scheurer, and Karsten Reuter
18:00 MM 34.9 Data-Driven Design of Two-Dimensional Non-van der Waals Materials — •Rico Friedrich, Mahdi Ghorbani-Asl, Stefano Curtarolo, and Arkady V. Krasheninnikov
18:15 MM 34.10 Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning — •Andreas Leitherer, Angelo Ziletti, and Luca M. Ghiringhelli
100% | Bildschirmansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg