DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

QI: Fachverband Quanteninformation

QI 5: Implementations: Solid state systems

QI 5.9: Talk

Tuesday, September 6, 2022, 12:00–12:15, H8

Ultra-stable open micro-cavity platform for closed cycle cryostats — •Michael Förg1, 2, Jonathan Noé1, 2, Manuel Nutz1, 2, Theodor W. Hänsch1, 3, and Thomas Hümmer1, 2, 31Fakultät für Physik, Ludwig-Maximilians-Universität Munich, Germany — 2Qlibri GmbH, Munich, Germany — 3Max-Planck-Institut für Quantenoptik, Garching, Germany

High-finesse, open-access, mechanical tunable, optical micro-cavities offer a compelling system to enhance light matter interaction in numerous systems, e.g. for quantum repeaters, single-photon sources, quantum computation and spectroscopy of nanoscale solid-state systems. Combining a scannable microscopic fiber-based mirror and a macroscopic planar mirror creates a versatile experimental platform. A large variety of solid-state quantum systems can be brought onto the planar mirror, analyzed, addressed individually, and (strongly) coupled to the cavity. We present a fully 3D-scannable, yet highly stable micro-cavity setup, which features a stability on the sub-pm scale under ambient conditions and unprecedented stability inside closed-cycle cryostats. An optimized mechanical geometry, custom built stiff micro-positioning, vibration isolation and fast active locking enables quantum optics experiments even in the strongly vibrating environment of closed-cycle cryostats.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg