DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 37: Superconducting Electronics: SQUIDs, Qubits, Circuit QED

TT 37.3: Talk

Friday, September 9, 2022, 10:00–10:15, H22

Charge-mediated quantum phase slip interference — •Jan Nicolas Voss1, Micha Wildermuth1, Max Kristen1,2, Hannes Rotzinger1,2, and Alexey V. Ustinov1,21Physikalisches Institut, Karlsruher Institut für Technologie, Karlsruhe, Germany — 2Institut für Quantenmaterialien und Technologien (IQMT), Karlrsruher Institut für Technologie, Karlsruhe, Germany

The duality between quantum phase slip junctions and Josephson junctions has triggered a variety of theoretical and experimental works and set the basis for a new type of quantum device based on coherent quantum phase slips. We present a realization of a quantum phase slip interferometer based on two strongly coupled superconducting nanowires. The interference is controlled by a gate voltage and visible as a periodic modulation of the critical Coulomb blockade voltage. The strength of the modulation strongly depends on the homogeneity of the wires, as the phase slip rates exponentially depend on the normal state resistances of the wires. We use the intrinsic electromigration technique ([1]) to adjust and homogenize the resistances of the wires in-situ and therefore are able to study a large range of wire impedances for single devices.

[1] J. N. Voss, Y. Schön, M. Wildermuth, D. Dorer, J. H. Cole, H. Rotzinger, A. V. Ustinov, ACS Nano 15, 4108 (2021)

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg