DPG Phi
Verhandlungen
Verhandlungen
DPG

Regensburg 2022 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

TT: Fachverband Tiefe Temperaturen

TT 7: Fluctuations, Noise, Magnetotransport, and Related Topics

TT 7.4: Talk

Monday, September 5, 2022, 15:45–16:00, H23

Theory of difference frequency quantum oscillations — •Valentin Leeb1 and Johannes Knolle1, 2,31Department of Physics TQM, Technische Universität München, James-Franck-Straße 1, D-85748 Garching, Germany — 2Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany — 3Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

Quantum oscillations (QO) describe the periodic variation of physical observables as a function of inverse magnetic field in metals. The Onsager relation connects the basic QO frequencies with the extremal areas of closed Fermi surface pockets, and the theory of magnetic breakdown explains the observation of sums of QO frequencies at high magnetic fields. Here we develop a quantitative theory of difference frequency QOs in metals with multiple Fermi pockets with parabolic or linearly dispersing excitations. We show that a non-linear interband coupling, e.g. in the form of interband impurity scattering, can give rise to otherwise forbidden QO frequencies which can persist to much higher temperatures compared to the basis frequencies. We discuss the experimental implications of our findings, for example, for materials with multifold fermion excitations.

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2022 > Regensburg