DPG Phi
Verhandlungen
Verhandlungen
DPG

SAMOP 2023 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

MO: Fachverband Molekülphysik

MO 7: Machine Learning and Computational and Theoretical Molecular Physics

Mittwoch, 8. März 2023, 11:00–13:00, F142

11:00 MO 7.1 Hauptvortrag: Augmenting basis with normalizing flows for solving Schrödinger equations: theoretical analysis — •Yahya Saleh, Armin Iske, Andrey Yachmenev, and Jochen Küpper
11:30 MO 7.2 A machine learning full dimensional potential energy surface for AlF-AlF: lifetime of the intermediate complexWeiqi Wang, •Xiangyue Liu, and Jesús Pérez-Ríos
11:45 MO 7.3 Quantum flows neural network for variational solutions of the Schrödinger equation — •Álvaro Fernández, Yahya Saleh, Andrey Yachmenev, Armin Iske, and Jochen Küpper
12:00 MO 7.4 Electronic excited states in deep variational Monte Carlo — •Mike Entwistle, Zeno Schätzle, Paolo Erdman, Jan Hermann, and Frank Noé
12:15 MO 7.5 The performance of CCSD(T) for the calculation of dipole moments in diatomics — •Xiangyue Liu, Laura McKemmish, and Jesús Pérez-Ríos
12:30 MO 7.6 Non-Local Polarizability Density as a Building Block for Dispersion Density Functionals — •Szabolcs Goger, Peter Szabo, Dmitry Fedorov, and Alexandre Tkatchenko
12:45 MO 7.7 Few-Body Physics of the Trapped Atoms: The Configuration Interaction Approach — •Matee ur Rehman, Alejandro Saenz, Fabio Revuelta Peña, Paul Winter, and Simon Sala
100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2023 > SAMOP