DPG Phi
Verhandlungen
Verhandlungen
DPG

SAMOP 2023 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

Q: Fachverband Quantenoptik und Photonik

Q 3: Quantum Computing and Simulation (joint session Q/QI)

Q 3.6: Vortrag

Montag, 6. März 2023, 12:15–12:30, E214

Physical computing with a superfluidMaurus Hans1, •Elinor Kath1, Marius Sparn1, Nikolas Liebster1, Felix Draxler2, Helmut Strobel1, and Markus Oberthaler11Kirchhoff-Institut für Physik, Universität Heidelberg, Germany — 2Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg, Germany

We report on the implementation of a hybrid neural network with a physical system. As a proof-of-concept we implement the regression and interpolation of a non-linear, one-dimensional function. A digital micromirror device is used to prepare an elongated atomic cloud and encode input values by imprinting a phase profile onto the superfluid. Its non-linear response is detected by the observation of the density distribution, from which the output value is generated by a trained linear layer. We compare the performance of this hybrid neural network for different parameters and give an outlook for further directions.

100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2023 > SAMOP