SAMOP 2023 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
Q: Fachverband Quantenoptik und Photonik
Q 43: QI Poster II (joint session QI/Q)
Q 43.53: Poster
Mittwoch, 8. März 2023, 16:30–19:00, Empore Lichthof
Polarization-preserving quantum frequency conversion for entanglement distribution in trapped-atom based urban area quantum networks — •Tobias Bauer and Christoph Becher — Universität des Saarlandes, FR Physik, Campus E2.6, 66123 Saarbrücken
In quantum communication networks information is stored in internal states of quantum nodes, which can be realized e.g. in trapped ions like 40Ca+ [1]. By transferring the states onto flying quantum bits, i.e. photons, it is possible to exchange information between these nodes over long distances via optical fiber links. In order to minimize attenuation in fibers, which is particularly high for typical transition frequencies of trapped ions, quantum frequency down-conversion of the transmitted photons to low-loss telecom bands is utilized [2].
We present a high-efficiency, rack-integrated quantum frequency converter for polarization-preserving conversion of 40Ca+-resonant photons to the telecom C-band. This converter is highly suited for real-world application in entanglement distribution experiments in urban area fiber networks, e.g. photonic entanglement [3] or creation of remote entanglement of atomic systems.
[1] C. Kurz et al., Phys. Rev. A. 93, 062348 (2016)
[2] M. Bock, P. Eich et al., Nat. Commun. 9, 1998 (2018)
[3] E. Arenskötter, T. Bauer et al., arXiv:2211.08841