SAMOP 2023 – scientific programme
Parts | Days | Selection | Search | Updates | Downloads | Help
Q: Fachverband Quantenoptik und Photonik
Q 48: Optomechanics II
Q 48.5: Talk
Thursday, March 9, 2023, 12:15–12:30, E214
Superconducting Quantum Magnetomechanics — •Christian M.F. Schneider1,2,6,7, David Zöpfl1,2, Mathieu L. Juan3, Nicolas Diaz-Naufal4, Lukas F. Deeg1,2, Aleksei Sharafiev1,2, Anja Metelmann4,5, and Gerhard Kirchmair1,2 — 1Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, 6020 Innsbruck, Austria — 2Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria — 3Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada — 4Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany — 5Institute for Theory of Condensed Matter, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany — 6Technical University of Munich, Physics Department, 85747 Garching, Germany — 7Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching, Germany
Quantum control of massive mechanical resonators has come within reach in recent years. In this talk, I describe an experimental setup in which we couple magnetic cantilevers to a superconducting microwave resonator or a transmon. When cooled down to mK temperatures, we achieve high and tunable coupling strengths, and could demonstrate control over the mechanical system in form of feedback cooling to around 10 phonons. The intrinsic nonlinearity of the microwave circuit gives rise to a more power efficient cooling performance. For the ultimate goal of quantum control, we couple a transmon directly to the cantilever and show some first characterization measurements.