DPG Phi
Verhandlungen
Verhandlungen
DPG

SAMOP 2023 – scientific programme

Parts | Days | Selection | Search | Updates | Downloads | Help

Q: Fachverband Quantenoptik und Photonik

Q 59: Poster IV

Q 59.29: Poster

Thursday, March 9, 2023, 16:30–19:00, Empore Lichthof

Simulating space-borne atom interferometers for Earth Observation and tests of General Relativity — •Christian Struckmann1, Ernst M. Rasel1, Peter Wolf2, and Naceur Gaaloul11Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany — 2LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université 61 avenue de l'Observatoire, 75014 Paris, France

Quantum sensors based on the interference of matter waves provide an exceptional performance to test the postulates of General Relativity by comparing the free-fall acceleration of matter waves of different composition. Space-borne quantum tests of the universality of free fall (UFF) promise to exploit the full potential of these sensors due to long free-fall times, and to reach unprecedented sensitivity beyond current limits.

In this contribution, we present a simulator for satellite-based atom interferometry and demonstrate its functionality in designing the STE-QUEST mission scenario, a satellite test of the UFF with ultra-cold atoms to 10^-17 as proposed to the ESA Medium mission frame [https://arxiv.org/abs/2211.15412]. Moreover, we will highlight the possibility of this simulator to design Earth Observation missions going beyond state of the art such as the CARIOQA concept [https://arxiv.org/abs/2211.01215].

This work is supported by DLR funds from the BMWi (50WM2263A-CARIOQA-GE and 50WM2253A-(AI)^2).

100% | Mobile Layout | Deutsche Version | Contact/Imprint/Privacy
DPG-Physik > DPG-Verhandlungen > 2023 > SAMOP