DPG Phi
Verhandlungen
Verhandlungen
DPG

SAMOP 2023 – wissenschaftliches Programm

Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe

QI: Fachverband Quanteninformation

QI 3: Quantum Machine Learning

Montag, 6. März 2023, 11:00–13:00, B305

11:00 QI 3.1 Hauptvortrag: Characterising quantum device variability with machine learning — •Natalia Ares
11:30 QI 3.2 The application of quantum neural networks in function approximation — •David Kreplin and Marco Roth
11:45 QI 3.3 Parameterized quantum circuits for reinforcement learning of classical rare dynamicsAlissa Wilms, •Laura Ohff, Andrea Skolik, David A. Reiss, Sumeet Khatri, and Jens Eisert
12:00 QI 3.4 Optimal storage capacity of quantum Hopfield neural networks — •Lukas Bödeker, Eliana Fiorelli, and Markus Müller
12:15 QI 3.5 Quantum kernel methods for regression — •Jan Schnabel
12:30 QI 3.6 Renormalisation through the lens of QCNNs — •Nathan A. McMahon, Petr Zapletal, and Michael J. Hartmann
12:45 QI 3.7 Quantum Gaussian Processes for Bayesian Optimization — •Frederic Rapp and Marco Roth
100% | Mobil-Ansicht | English Version | Kontakt/Impressum/Datenschutz
DPG-Physik > DPG-Verhandlungen > 2023 > SAMOP