SAMOP 2023 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
QI: Fachverband Quanteninformation
QI 3: Quantum Machine Learning
Montag, 6. März 2023, 11:00–13:00, B305
11:00 | QI 3.1 | Hauptvortrag: Characterising quantum device variability with machine learning — •Natalia Ares | |
11:30 | QI 3.2 | The application of quantum neural networks in function approximation — •David Kreplin and Marco Roth | |
11:45 | QI 3.3 | Parameterized quantum circuits for reinforcement learning of classical rare dynamics — Alissa Wilms, •Laura Ohff, Andrea Skolik, David A. Reiss, Sumeet Khatri, and Jens Eisert | |
12:00 | QI 3.4 | Optimal storage capacity of quantum Hopfield neural networks — •Lukas Bödeker, Eliana Fiorelli, and Markus Müller | |
12:15 | QI 3.5 | Quantum kernel methods for regression — •Jan Schnabel | |
12:30 | QI 3.6 | Renormalisation through the lens of QCNNs — •Nathan A. McMahon, Petr Zapletal, and Michael J. Hartmann | |
12:45 | QI 3.7 | Quantum Gaussian Processes for Bayesian Optimization — •Frederic Rapp and Marco Roth | |