SKM 2023 – wissenschaftliches Programm
Bereiche | Tage | Auswahl | Suche | Aktualisierungen | Downloads | Hilfe
BP: Fachverband Biologische Physik
BP 13: Signaling, Biological Networks
BP 13.5: Vortrag
Mittwoch, 29. März 2023, 10:45–11:00, BAR 0106
Inference of dynamical networks connectivity with Recurrent Neural Networks — •Pablo Rojas, Marie Kempkes, and Martin E Garcia — Theoretical Physics, University of Kassel, Germany
The inference of directed links in networks of interacting systems is a problem spanning many disciplines. Systems out of equilibrium represent a special case, where samples are not independent but structured as timeseries. In this context, Recurrent Neural Networks (RNN) have attracted recent attention, due to their ability to learn dynamical systems from sequences. We introduce a method to infer connectivity of a network from the timeseries of its nodes, using a RNN based on Reservoir Computing (RC). We show how modifications of the standard RC architecture enable a reliable computation of the existence of links between nodes. While the method does not require information about the underlying mathematical model, its performance is further improved if the selection of hyperparameters is roughly informed by knowledge about the system. The method is illustrated with examples from different complex systems, ranging from networks of chaotic Lorenz attractors to biological neurons. Using simulations of these systems, we demonstrate its power and limitations under a variety of conditions, such as noise levels, delayed interactions, size of the network and hidden variables.